Divisors of the Gaussian integers in norm group ${\rm E}_{n}^{+}$

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Divisors of Sums of Integers, Iii

1. Let P{ή) and p(n) denote the greatest and smallest prime factor of n, respectively. Recently in several papers, Balog, Erdόs, Maier, Sarkozy, and Stewart have studied problems of the following type: if A\,...,Ak are "dense" sets of positive integers, then what can be said about the arithmetical properties of the sums a\ H h % with a,\ G A\,...,ak G Akl In particular, Balog and Sarkόzy proved...

متن کامل

The Gaussian Integers

Since the work of Gauss, number theorists have been interested in analogues of Z where concepts from arithmetic can also be developed. The example we will look at in this handout is the Gaussian integers: Z[i] = {a + bi : a, b ∈ Z}. Excluding the last two sections of the handout, the topics we will study are extensions of common properties of the integers. Here is what we will cover in each sec...

متن کامل

Gaussian Integers

We will investigate the ring of ”Gaussian integers” Z[i] = {a + bi | a, b ∈ Z}. First we will show that this ring shares an important property with the ring of integers: every element can be factored into a product of finitely many ”primes”. This result is the key to all the remaining concepts in this paper, which includes the ring Z[i]/αZ[i], analogous statements of famous theorems in Z, and q...

متن کامل

Gaussian Integers

Gaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rat...

متن کامل

Maximal Sets of Integers with Distinct Divisors

Let S denote a set of positive integers and τ : S → be defined so that τ(s) is a proper divisor of s (that is, τ(s) divides s and τ (s) < s). The ensemble (S, τ ) is said to have the ‘distinct divisor property’ if τ is injective, that is, if the τ (s) are different for different values of s. We will also say that S has the distinct divisor property if there exists a τ , as above, such that (S, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Researches in Mathematics and Mechanics

سال: 2017

ISSN: 2519-206X

DOI: 10.18524/2519-206x.2017.1(29).135734